
Secure Backup and Recovery of SSI Wallets using
Solid Pod Technology

Mohammad Farhad∗, Gourab Saha∗, Masum Alam Nahid†, Fairuz Rahaman Chowdhury†,
Partha Protim Paul∗, Mohammed Raihan Ullah∗, Md Sadek Ferdous‡

∗Institute of Information and Communication Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
†Cryptic Consultancy Limited, London, UK

‡Department of Computer Science & Engineering, BRAC University, Dhaka, Bangladesh

Email: wahedfarhad123@gmail.com, gourabsahag@gmail.com, m.a.nahid008@gmail.com, frcshovon@gmail.com,

partha-iict@sust.edu, raihan-iict@sust.edu, sadek.ferdous@bracu.ac.bd

Abstract—A new paradigm for digital identity management
called Self-Sovereign Identity (SSI) has emerged to offer users
more control over their identity data. An important component of
SSI is a wallet that stores cryptographic keys and other identity
data. Secure backup and recovery methods for data stored in
such wallets are a crucial feature for its wide-scale adoption,
however, such a feature is lacking or implemented casually in
the existing SSI wallets. In this research, we propose a secure
backup and storage of SSI wallets using a novel technology called
Solid Pod. Solid Pod is an emerging technology that enables users
to securely store data online. Towards this aim, we present the
architecture, based on a threat model and requirement analysis,
of the proposed approach. We also discuss its implementation
details, outline a number of protocol flows highlighting different
use-cases and analyse its security, advantages and limitations.

Index Terms—Self-Sovereign Identity (SSI), SSI Wallet, Social
Linked Data, Solid Pod, Blockchain, Hyperledger Aries, Hyper-
ledger Indy.

I. INTRODUCTION

Identity Management is an integrated part of online services

which helps both users and service providers to manage

the identity data of users. The existing identity management

systems (IMSs) suffer from a number of issues: i) they are

centralised, ii) privacy-invasive and iii) users have less control

over their identity data as these data are mostly controlled

by the entity holding those data [1]. To address these issues,

a new notion of identity, called self-sovereign identity (SSI),

has been proposed [2].
The main motivation of SSI is to empower users in a

decentralised way so that users can exert more control over

their identity data and access services by sharing their identity

data in a privacy-friendly way. SSI has a number of entities,

such as issuer, holder and verifier, who interact with other

using a number of SSI constructs such as SSI connections,

Decentralized Identifiers (DIDs) [3], Verifiable Credentials

(VCs) [4] and SSI wallets. Among these constructs, an SSI

wallet is a crucial component. Indeed, an SSI wallet is used

by each entity to store different cryptographic keys, SSI

connections, different DIDs and VCs. That is why the security

of an SSI wallet is important. Another important feature

of an SSI wallet is how such a wallet is backed up and

restored (recovered). This is important in situations where

someone loses the device on which the wallet was installed.

Understandably, a secure back and restore (restore, these two

terms will be used interchangeably) is a crucial factor for a

wide-scale adoption of SSI. Unfortunately, this crucial feature

is either missing in the existing SSI wallets or the mechanism

is not very secure.

A novel Web re-decentralisation technology called Solid

(Social Linked Data) has been initiated by the World Wide

Web creator Tim Berners Lee [5]. Solid is an open-source

platform that provides individuals with better control over the

storage of their data. Solid allows users to store their data on a

decentralised Personal Online Data (POD) server. Solid Pods

enable users to store and manage their data independently,

without the need for any centralised authority. Other major

advantages of using Solid are its strong security and privacy

properties [6]. Hence, Solid Pods can be an excellent solution

for the secure storage of SSI wallets.

Indeed, in this article, we present a novel approach for

secure backup and restoration of SSI wallets using Solid Pods.

The main contributions of this research are:

• The proposal of a secure backup and restoration method

for SSI wallets.

• A comprehensive architecture for the proposed system,

based on a threat model and requirement analysis, along

with a discussion of different implementation aspects of

the respective Proof-of-Concept (PoC).

• Detailed protocol flow illustrating different use-cases

using the PoC.

• A critical analysis of the security and advantage of the

proposed approach.

Structure: The concept of SSI and other related topics are

briefly introduced in Section II. We review the existing related

works and systems in Section III. Then, in Section IV, the

core concept is presented along with a threat model and a

requirement analysis. The architecture of the proposed system

is discussed in Section V along with the details of the

implementation of the developed PoC. We illustrate a number

1101

2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC)

2836-3795/24/$31.00 ©2024 IEEE
DOI 10.1109/COMPSAC61105.2024.00149

of protocol flow highlighting different use-cases using the

PoC in Section VI. We analyse the security of the developed

system and discuss its advantages, limitation and future works

in Section VII. Finally, we conclude in Section VIII.

II. BACKGROUND

In this section, we briefly discuss about SSI (Section II-A)

and solid pod (Section II-B).

A. Self-Sovereign Identity

Identification and authentication are integral processes for

accessing online services in a secure and customised way.

To streamline these two processes, users first need to register

with a Service Provider (SP), creating a digital identity. Since

there are many online services that users need to access,

they end up creating many more identities where the majority

authentication process requires to remember an identifier (e.g.

username) and credential (e.g. a password). Unfortunately, the

consequence of this leads to a situation in which the identities

of a single user are scattered across multiple SPs which are

difficult to manage [1]. As data show that the typical corporate

user had to remember 191 passwords [7] or that managing

usernames and passwords is now the least-liked web experi-

ence [8]. To mitigate this issue, different Identity Management

Systems (IMSs), such as SAML (Security Assertion Markup

Language) [9]), OpenID [10] and OAuth (Open Authorization)

[11], have been proposed. Unfortunately, most of them are

centralised in nature and users end up having less control over

their own data when using these systems.

Self-sovereign identity (SSI) is a new digital identity

paradigm on the Internet whose motivation is to empower

users so that they can exert more control over their identity

data [2]. SSI has a number of entities: such as issuer, holder

and verifier. They interact with each other using a number

of SSI constructs such as SSI connections, Decentralized

Identifiers (DIDs) [3] and Verifiable Credentials (VCs) [4] and

SSI wallets. Each entity needs to establish an SSI connection

with another entity before they can interact with others. DIDs

for each entity are generated from their respective public keys.

Each DID is accompanied by a respective DID Document

(DID Docs, in short) which is a JSON object containing

the linked cryptographic public keys and different metadata.

DIDs of two entities are used to establish the SSI connection

between them.

VCs are cryptographically signed claims regarding a user-

generated by an issuer. The typical SSI flow is as follows. At

first, the user (holder) establishes two different SSI connec-

tions with the issuer and the verifier respectively. The user then

requests for a VC to the user and the issuer issues the VC via

the established SSI connection and then the VC is stored in the

SSI wallet of the user. Then, when requested, the user releases

the VC to the verifier and the Verifier verifies the VC by

verifying its digital signature. In this SSI setting, a blockchain

can be used as a verifiable data registry for the storage of DIDs

and DID Docs as blockchain offers verifiability, persistence

and immutability of data [12].

B. Solid (Social Linked Data)

Solid [6] is a standard that allows individuals to store their

data securely in decentralised data warehouses known as Pods.

Data Pods resemble private, protected web servers, which can

be hosted on a web server, on a cloud server or even on a

personal server. The main motivation is that it will support a

decentralised ecosystem for existing social web apps, where

users fully control their data and may authorise third parties

to use it for certain reasons, such as social networks [13].

Solid refers to a set of protocols and conventions for building

decentralised social applications. Some key components of

Solid are discussed next.

• WebID: A decentralised identity mechanism that allows

users to have a single identifier across the Web [14].

• Pod Provider: The pod provider hosts the physical or

virtual servers on which user data are stored [14].

• Resource Storage: The data consisting of both RDF

(Resource Description Framework) [15] data and non-

RDF data (e.g., jpeg or pdf files) are stored as JSON-LD

(JSON Linked Data). All data are stored as files.

• Linked Data: Using the principles of Linked Data (a

method for structuring, interconnecting and sharing data

on the Web), data are represented in a machine-readable

format and relationships between entities are established

using URIs [14].

• Web Access Control: It defines how resources are pro-

tected and accessed on the Web. It allows users to control

who has access to their data [16], [17].

Solid provides several key features and benefits:

• Facilitating personal data pods which are secure and

private storage spaces for an individual’s data. The data

of each person is stored in their data pod and they have

complete control over it.

• Supporting a decentralised data management model

where individuals can store their data in a personal data

pod, rather than relying on a centralised third party to

store it for them. Ultimately, the degree of centralisation

or decentralisation achieved in a Solid implementation

depends on the specific choices made by users and

developers.

• Strong support for secure and privacy-preserving data

sharing, enabling individuals to control their data and

choose what data they share and with whom they share it.

Open standards and protocols within Solid aim to prevent

any single entity from controlling the network or user

data.

• Offering interoperability with other web-based technolo-

gies and data formats, enabling it to work seamlessly with

existing infrastructure and systems.

The Solid Pod architecture is illustrated in Figure 1, where

each user possesses a Unique Identity on the network repre-

sented by a WebID (URL) linked to their Pod (User’s Pod).

A user interacts with the Application Software which in turn

interfaces with their Pods using their respective WebIDs via

the Solid Pod Server. Before a user can access their Pod, the

1102

user must be authenticated by the Pod Server. The user can

store different types of data within their Pod whereas access

to resources and content delivery from the Pod depends on

permissions granted to the application, ensuring secure and

controlled data sharing.

Application
Software

Solid
Server

User's
Pod

Other
Pod

Other
Pod

Access Resources
& Deliver Content

Access Resources
& Deliver Content

User

User Identity Check

Fig. 1: The Solid Pod Architecture [14].

III. RELATED WORK

In this section, we provide a brief overview of relevant

research in the areas of SSI wallets and Solid Pods. To our

knowledge, no prior research has explored the possibility of

secure backup and restoration of SSI wallets using Solid Pods.

However, we have found some relevant researches, which we

analyse next.
The authors of [18] have highlighted the weaknesses of

traditional digital identity systems, which store user identity

details in centralised databases with little control for users

over their personal information. It proposes self-sovereign

identity (SSI) as a solution for a secure and reliable digital

identity system and advises to store personal information in

a decentralised manner. In addition, they have suggested the

secure backup of their wallets and keeping them in secure

digital storage, like a cloud-based provider. The authors of

[19] have made a demonstration that illustrates the use of

Web-based Verifiable Credentials to grant access to resources

stored in a Solid Pod. To maintain the user’s privacy, the

demonstration uses the BBS + signature scheme (enhanced

Boneh, Boyen, and Shachum) [20] for selective disclosure

of attributes. In [21], the authors have presented a solution

to data over-centralisation, which can lead to tampering and

unauthorised sharing of user information. The solution in-

volves combining two technologies, Solid Pods and distributed

ledgers, to ensure a complete decentralisation of data with

better user controls. The authors in [22] have modelled a

digital wallet that uses the secure element of a mobile device

to store sensitive information such as identity credentials and

cryptographic keys. The wallet can back up and recover secret

keys in a distributed and privacy-preserving way. In [23] the

authors address the challenges associated with secure backup

and recovery processes for private keys, particularly in the

context of hardware wallets.

In our research, we have also analysed the backup and

restoration of some existing SSI wallets. The Trinsic wallet

[24] can backup and restore the wallet in a centralised cloud

server, meaning users have no control to dictate the security

of these backups. Conversely, the backup generated by the

ADEYA wallet [25] and the DIT wallet [26] generate a self-

contained wallet file to share and restore without relying on

any server. Data wallet [27] has no restoration, just a cloud-

based backup option. As we can see, the above-mentioned

wallets have various drawbacks, particularly related to security

concerns. In this paper, we present a better approach to secure

backup and restoration of SSI wallets.

IV. PROPOSAL

In order to address the limitation of existing SSI wallets,

we propose a system that integrates Solid Pod technology with

an open-source SSI wallet to backup SSI constructs such as

SSI connections and VCs. The system demonstrates that it is

possible to provide a secure storage solution that reduces the

risk of data breaches and unauthorised access to personal data.

Before we present the architecture of the proposed system,

we identify the underlying security threats (Section IV-A) and

formulate a few functional and security requirements (Section

IV-B).

A. Threat Modelling

Threat modelling is a structured approach to identify pos-

sible security threats to a software system and evaluate the

risk associated with these threats. To model threats for this

research, we have used the well-known STRIDE model [28],

which encompasses a variety of security risks as shown below.

• T1-Spoofing Identity: This threat with respect to our

research involves an attacker creating a false identity as

an authorised Pod user or impersonating another person

or entity to gain access to sensitive SSI information.

• T2-Tampering with Data: It involves an attacker who

manipulates, alters, or corrupts the Pod data to achieve a

malicious goal.

• T3-Repudiation: It refers to the threat of a user denying

that they have performed a malicious action.

• T4-Information Disclosure: It refers to the situation in

which an attacker unintentionally gains access to SSI

information stored in a Solid Pod.

• T5-Denial of Service (DOS): The goal of a DOS at-

tack is to prevent legitimate users from accessing the

functionality of backup and restore, either temporarily or

permanently.

• T6-Elevation of Privilege: It describes a situation where

an attacker gains elevated access rights or permissions, al-

lowing them to perform actions, e.g., receiving the ability

to share data from a Solid Pod, that would normally be

restricted.

B. Requirement Analysis

Next, we present a set of functional and security require-

ments. Functional requirements ensure that the system can

1103

function as intended, while security requirements are used to

mitigate the identified threats.

1) Functional Requirements (FR)

The functional requirements are listed below:

• F1. The system should offer solutions to backup and

restore of mentioned SSI constructs to a Solid Pod

controlled by the respective user. To do this, we must

integrate this backup and restore option into an existing

SSI wallet.

• F2. The proposed should backup and restore a number of

SSI constructs such as Decentralized Identifiers (DIDs),

Verifiable Credentials and SSI connections as well as the

related keys.

• F3. The backup and storage method of SSI wallets should

be user-friendly so that it is accessible to users with a

variety of technical abilities.

2) Security Requirements (SR)

Next, we present a set of security requirements:

• S1. The system must ensure that only authenticated and

authorised users can access the data stored within a Pod,

thereby mitigating the T1 threat.

• S2. The system must ensure that in case of tampering

with the SSI constructs, the corrupted data can be easily

retrieved from the last backup. Thus, the threat T2 can

be mitigated by S2.

• S3. The system must utilise a digital signature to protect

against the repudiation threat (T3).

• S4. The system must apply encryption mechanisms at

various levels, such as during data in transit as well as

data at rest to mitigate the T4 threat.

• S5. Measures should be taken so that users can restore

data whenever required, even during a DOS attack (mit-

igating T5 threat).

• S6. Users should only have the minimum degree of access

necessary to carry out their job responsibilities, according

to the principle of least privileges, to mitigate the T6

threat.

V. ARCHITECTURE AND IMPLEMENTATION

The primary objective of the system is to integrate a

Solid Pod-based backup and restoration of SSI constructions

within an SSI wallet. Next, we discuss the architecture of the

proposed system (Section V-A) and its implementation details

(Section V-B).

A. Architecture

The architecture of the system is shown in Figure 2. As

per Figure 2, there are four main components of the system:

User, Wallet, Blockchain, and Solid Pod Server. The user uses

the wallet to store SSI constructs such as SSI connections,

VCs and cryptographic keys. The wallet interacts with the

blockchain, using a verifiable data registry, to retrieve the

DID Doc whenever a new SSI connection is established.

According to the user’s instructions, the wallet backs up the

SSI constructs to the Solid Pod which then can be recovered

to another wallet installed on another smart device. In Figure

2, SSI communications are represented by dotted arrows,

whereas non-SSI direct communications are represented by

solid arrows. It is imperative that all SSI constructs are backed

up and recovered with strict security procedures so as to fulfil

all the security requirements.

User

Mobile Wallet

Blockchain
Solid Pod Server

Storing
Wallet

Retrieving
Wallet

Retrieving
DID Doc

Fig. 2: Architecture of the Proposed System.

B. Implementation

Using a variety of frameworks and technologies, we have

developed a Proof of Concept (PoC) using the proposed archi-

tecture. Next, we briefly present the implementation details.

For implementation, we needed an open-source SSI wallet

so that we could modify the wallet to integrate the required

features (interacting with a Solid Pod). We have chosen the

Aries-Bifold digital wallet [29] (Bifold in short), which is the

only open source wallet available based on the Hyperledger

Indy and Aries frameworks. There are a few other Hyperledger

Indy and Aries based SSI wallets, such as Trinsic [24],

ADEYA [25], DIT [26], however, they are not open-source.

The Bifold wallet is written in React-Native, an open-source

UI software framework created by Meta Platforms [30].

In addition, we have used an implementation of Hyperledger

Aries based SSI framework called, Hyperledger Aries Cloud
Agent - Python (ACA-Py) [31]. It relies on Hyperledger Indy

[32], a purpose-built blockchain for SSI. The Bifold wallet

makes use of the ACA-Py based public mediator (Indicio

Public Mediator) [33].

For the purposes of storing and backing up the SSI wallet,

we have utilised Solid Pod technology [34] in our PoC. In

order to manage interactions with the Solid Pod and the wallet,

we have incorporated a user interface created by ReactJS [35],

a JavaScript library.

VI. PROTOCOL FLOW

In this section, we outline the protocol flow, illustrating the

interactions between the various parts of the proposed system

along with the underlying use-cases utilising the PoC. Towards

1104

this aim, in the following, we present the data model (Section

VI-A), algorithm (Section VI-B) and protocol flow (Section

VI-C).

A. Data Model

First, we present the mathematical notations in Table I.

These notations have been used to create the data model. The

notations are self-explanatory and hence, no further explana-

tions are provided.

TABLE I: Cryptographic Notation

Notations Descriptions
U User (Playing the role of the holder)
W SSI Wallet
PS Pod Server
PP Pod Provider
PURLU WebID URL of the Pod for U
[...]https Communication over a https channel
[...]k Communication over a channel encrypted with key k
h Hashed user password
Wallet Wallet file consists of SSI constructs
KU Secret key for encrypting and decrypting the wallet
H(M) SHA-512 hashing operation of message M
msg A textual message
MAC (d ,K) A message authentication code with data d and key K

Now, we present the data model used in this PoC. The data

model is presented in Table II and is discussed next.

TABLE II: Data Model

podReq � 〈type, data〉
TY PE � 〈registration, backup, restore〉
DATA � 〈regisData,PURLU 〉
regisData � 〈userName, name, email, h〉
walletData � 〈{Wallet}KU

,MAC ({Wallet}KU
,KU)〉

resp � 〈msg〉
loginData � 〈userName, h〉

The proposed system utilises a request and response pro-

tocol in which each request has a type and data. There are

three types of requests (registration, backup and restore) as

presented in Table II. There are two types of data: regisData
and PURLU . regisData and loginData consist of a user-

name and h which denotes the hash of the password, i.e.,

h = H(password). PURLU denotes the URL of a specific

user Pod. walletData represents a zip file consisting of SSI

constructs data (denoted with Wallet) encrypted with a user-

generated key (KU) and a Message Authentication Code

(MAC) generated with {Wallet}U and the key KU . There

is only one response denoted with resp, consists of a message

that varies depending on the request type.

B. Algorithm

In order to integrate the backup and recovery features in the

Bifold wallet, we have modified its codebase. The pseudocode

of the newly added functionalities are presented in Algorithm

1. Next, we present a brief explanation of the pseudocode.

According to Algorithm 1, there are two functions

backupFunc and restoreFunc that represent the newly added

pseudocode for the backup and restore functionalities in the

Algorithm 1 Algorithm for new functionalities in Bifold

1: . . .
2: function backupFunc(data)
3: keyPass1 = data.password1;
4: keyPass2 = data.password2;
5: if keyPass1 == keyPass2 then
6: Generate KU using keyPass1;
7: Encrypt the wallet using KU as {Wallet}KU

8: Generate MAC using {Wallet}KU and KU ;
9: Prepare walletData.zip using {Wallet}KU and MAC ;

10: Save the walletData.zip file in the local storage.
11: podReq = 〈backup,PURLU 〉;
12: Send podReq to Pod Server;
13: else
14: ‘‘Show an error message”;
15: end if
16: end function
17: function restoreFunc(walletData.zip)
18: keyPass = Inputted password by the user;
19: Generate KU with keyPass;
20: W interacts with U to get walletData.zip;
21: Unzip walletData.zip;
22: Retrieve {Wallet}KU and MAC from walletData;
23: Verify MAC using {Wallet}KU and KU ;
24: Wallet = Decrypted {Wallet}KU using KU ;
25: Retrieve all SSI constructs from Wallet ;
26: Restore them in the Bifold wallet;
27: end function
28: . . .

Bifold wallet. During the backup process, the user needs

to submit a password that needs to be repeated for secu-

rity. These two passwords are fed into backupFunc where

these passwords are compared (lines 3-5). If they match,

then an AES key (KU) is generated using the password

that is used to encrypt the SSI constructs of the wallet,

denoted by {Wallet}KU
. In addition, a MAC (denoted

MAC ({Wallet}KU
,KU)) is generated. Then, this function

prepares a new zip called walletData.zip, which consists of

{Wallet}KU
and MAC ({Wallet}KU

,KU)) and then this zip

file is saved in the local storage of the mobile phone. Then a

podReq is prepared and sent to the Pod Server (lines 11-12).

The restoreFunc function is invoked when the user clicks

on a particular button discussed later. When this function

is invoked, the user provides a password which is used to

generate KU . The user then selects the walletData.zip file

and then the wallet unzips the file. From the unzipped file,

{Wallet}KU
and MAC ({Wallet}KU

,KU) are retrieved. KU

is used to decrypt {Wallet}KU
and verify the MAC. Once

verified, SSI constructs are retrieved from the decrypted data

which are then restored in the Bifold wallet.

Next, we present Algorithm 2 in which the pseudocode for

the Pod server is presented.

According to Algorithm 2, there are four functions:

podRegFunc, backupFunc, restoreFunc and podLoginFunc,

each representing different functionalities.

The podRegFunc function is used to register a user on the

Pod server by passing the required username and its respective

hashed password. The podRegFunc function internally uses

1105

Algorithm 2 Algorithm for Pod Server

1: . . .
2: function podRegFunc(req)
3: userName = req.regisData.userName;
4: name = req.regisData.name;
5: email = req.regisData.email;
6: h = req.regisData.h;
7: PURLU = registerIntoPP(userName,name,email,h);
8: return PURLU ;
9: end function

10: function backupFunc(req)
11: Retrieve userName and h by interacting with U ;
12: PURLU = req.PURLU ;
13: if podLoginFunc(userName,h) then
14: Interact with the user to receive walletData.zip file;
15: Store walletData.zip file to the Pod with PURLU ;
16: return “Wallet backed up successfully!”;
17: else
18: return “An error occurred!”;
19: end if
20: end function
21: function restoreFunc(req)
22: Retrieve userName and h by interacting with U ;
23: URL = req.PURLU ;
24: if podLoginFunc(userName,h) then
25: Retrieve walletData.zip file from the Pod using URL;
26: Allow the user to download walletData.zip file;
27: else
28: ‘‘Show an error message”;
29: end if
30: end function
31: function podLoginFunc(userName, h)
32: h′ = getFromPP(userName);
33: if h == h′ then
34: return TRUE;
35: else
36: return FALSE;
37: end if
38: end
39: end function
40: . . .

the registerIntoPP function that returns the user-specific URL

of the Pod (denoted with PURLU). On the other hand, the

podLoginFunc function is used to authenticate a user to the

Pod Server. In this function, the stored hashed password

is retrieved from the system using the built-in getFromPP
function. Then the retrieved h is compared with the supplied

hash. If they match, a TRUE value is returned; otherwise,

a FALSE is returned. The other two functions (backupFunc,

restoreFunc) use the podLoginFunc internally to authenticate

a user to the Pod server.

The backupFunc is invoked when the Pod server receives a

backup request. At first, PURLU is retrieved from req . Con-

sequently, the Pod server interacts with the user to receive the

username and hashed password and the user is authenticated

to the pod server. Then, the walletData.zip file is received

from the user. Finally, the walletData.zip file is stored on the

Pod server identified by PURLU .

The restoreFunc is invoked during the recovery process.

Like before, PURLU is retrieved from req , the username and

hashed password are received from the user and then the

user is authenticated to the pod server. Once authenticated,

the walletData.zip file is retrieved from the respective user

Pod. This zip file is used to prepare walletResp which is then

returned.

C. Use-case & Protocol flow

In this section, we present a number of use-cases to illustrate

how a user would interact with the system using a number

of protocol flows. We consider three different use-cases:

Registration, Backup and Recovery. We discuss each of the

use-cases in the following.

Registration: Each user must register to the Pod server before

using it. In this use-case we present the respective registration

process for a user. The protocol for this use-case is illustrated

in Figure 3. There are three entities in this use-case: User (U),

Pod Server (PS) and the Pod Provider (PP). When a user

interacts with the Pod Server to register, it sends a registration

page. The screenshot of the registration is shown in Figure 4.

We have excluded this interaction from the protocol flow for

brevity. Next, we present the subsequent flows.

User (U) Pod Server
(PS)

Pod Provider
(PP)

[Create a Pod for U]https

[Pod created for U]https[PURLU]https

[podReq(registration, regisData)]https

Fig. 3: Registration Protocol Flow.

Fig. 4: Pod Registration. Fig. 5: Backup/Restore.

1106

M1 : The user submits the requested username and password

which are then transformed into a podReq consisting

of registration as the type and regisData as the data.

The podRegFunc of PS is invoked which retrieves the

username, hashed password and other data.

M2 : PS interacts with PP to create a Pod for U .

M3 : PP creates a Pod for U and returns its URL PURLU

to PS.

M4 : PS returns PURLU to the user.

Backup: Next, we discuss the backup use-case along with its

respective protocol flow. This use-case is initiated whenever

the user would like to create a secure backup of their SSI

constructs. We have added two additional options to the Bifold

wallet for secure backup and recovery to facilitate this (Figure

5). The backup protocol is illustrated in Figure 6. Before

engaging in this use-case, it is assumed that the user has

interacted with different SSI entities (e.g. issuers and verifiers)

to create SSI connections with them and to receive VCs which

are stored in the wallet. With this assumption, we discuss the

steps in this protocol flow below.

M1 : The user clicks the Backup option in the Bifold wallet.

M2 : The wallet shows a form to submit a password for the

backup, as well as a repeat of the password (Figure 7),

denoted as keyPass1 and keyPass2 .

M3 : The user submits keyPass1 and keyPass2 .

M4 : At this point, the backupFunc function of Algorithm 1

is invoked and lines 6-12 of Algorithm 1 are executed

to send podReq to PS.

M5 : After receiving podReq , PS invokes the backupFunc
function from Algorithm 2. Since the user’s credential is

required to continue with the rest of the functionalities,

PS sends the login form to the user.

M6 : The user submits their username and password (Figure

8). The submitted password is hashed first and then the

username and the hashed password are returned to PS.

PS executes line 12 of Algorithm 2 to authenticate the

user to the Pod server.

M7 : PS sends an HTML form to U to upload the wallet to

be stored in the user Pod (Figure 10).

M8 : U uploads walletData.zip to PS.

M9 : PS requests PP to store walletData.zip in a pod

identified by PURLU .

M10 : PP stores those data to to the PURLU Pod and sends

success message back to PS.

M11 : A successful message is returned to W .

M12 : W forwards the successful message to U .

Recovery: Next, we explore the Recovery use-case along with

its respective protocol flow. This use-case is initiated whenever

the user would like to restore the backed-up wallet from the

Solid Pod. The underlying reason could be that the user has

lost the mobile where the previous wallet was installed and

hence, the backed up SSI constructs need to be restored into

a new SSI wallet in a new phone. The protocol for this use-

case is illustrated in Figure 9. The protocol steps are presented

below.

M1 : The user clicks the Restore option in the Bifold wallet.

M2 : The wallet prepares a podReq and sends it to PS.

M3 : After receiving podReq , PS invokes the restoreFunc
function from Algorithm 2. Since the user’s credential is

required to continue with the rest of the functionalities,

PS sends the login form to the user.

M4 : The user submits their username and password (Figure

8). The submitted password is hashed first and then the

username and the hashed password are returned to PS.

PS executes line 21 of Algorithm 2 to authenticate the

user.

M5 : PS executes lines 21-23 of Algorithm 2 to request the

PP to retrieve the walletData.zip file from the Pod

identified by PURLU .

M6 : PP returns walletData.zip file to PS.

M7 : PS returns walletData.zip file to the user that is

downloaded (Figure 11) and stored to the local storage

of the device.

M8 : The user clicks the Continue button from the wallet.

M9 : The wallet shows a form to enter a password (denoted

as keyPass) that is used during the backup use-case.

M10 : The user submits keyPass .

M11 : W shows a file explorer for the user to select the

downloaded walletData.zip file.

M12 : At this point, W invokes the restoreFunc function of

Algorithm 1 and executes lines 17-23 to restore the SSI

constructs back to the wallet.

M13 : Finally, a successful message is shown to U .

VII. DISCUSSION

In this section, we examine how our proposed system has

satisfied its different requirements (SectionVII-A), discuss its

protocol validation (Section VII-B), advantages and limitations

(Section VII-C), comparative analysis between Solid Pod and

Cloud (Section VII-D),comparative analysis between Bifold

and other wallets (Section VII-E) and highlight possible future

works (Section VII-F).

A. Analysing Requirements

At first, we explore the functional requirements. The sys-

tem PoC effectively satisfies all functional requirements, as

explained next. The system enables the user to backup and

restore a number of SSI constructs such as DIDs, VCs and

SSI connections, thereby satisfying F1 and F2. The backup

and restore processes are quite easy to follow. The user is

guided through each process and they do not need to engage

in complex interactions. The complexities of the interactions

are effectively hidden from the user. That is why we can say

that the system satisfies F3.

Next, we explore the security requirements. The Pod Server

utilises an authentication method to ensure that only the

authenticated user can access their respective Pod data. This

satisfies S1. Using MAC, we can ensure if the backed up wallet

has been corrupted or not. If it is corrupted, the recovery

process can be used to easily restore the wallet, thereby

1107

Wallet (W)User (U) Pod Provider
(PP)

Backup

(Backup)

Pod Server
(PS)

Submit keyPass1 and keyPass2

[Successfully stored]https

[Store walletData.zip
to PURLU]https

[podReq(backup,PURLU)]https
keyPass1 and keyPass2

[Login Form]https
[loginData]https

[Upload Data]https

[walletData.zip]https

[Successfully stored]httpsSuccessfully stored

Fig. 6: Backup Protocol Flow.

Fig. 7: Preparing Backup. Fig. 8: Pod Server Login.

satisfying S2. The system transfers data with the Pod Server

over an HTTPS channel and stores the wallet in an encrypted

format. Thus, S4 is satisfied. The user cannot access any other

Pods within the Pod Server as the Solid Pod server strictly

maintains the principle of least privileges, satisfying thus S6.

To satisfy S5, we need additional mechanisms, for example,

using blockchain as a Pod Server. There is no such framework.

Finally, the system does not satisfy S3 since it does not employ

any digital signature mechanism. This is because we do not

consider the user as the attacker as the attacker would not gain

anything by backing up the wallet to the Solid Pod or restoring

the wallet from the Solid Pod and then non-repudiating their

action.

B. Protocol Validation

To evaluate the security of the system, we formally verify

the protocol using a state-of-the-art protocol verification tool,

ProVerif [36]. Primarily, we focus on the protocol’s secrecy

and authentication objectives. To accomplish this, we first

formalised the protocol using ProVerif. This process allows

ProVerif to evaluate the security properties of the protocol and

identify any potential security vulnerabilities. Subsequently,

we performed a model-checking procedure, a computational

technique that verifies whether the system satisfies the spec-

ified security properties. Using this method, we were able to

verify whether our protocol met the secrecy and authentication

objectives, thereby ensuring the system’s overall security.

The secrecy objective focuses on maintaining confidentiality

while data are transmitted between entities. It aims to guaran-

tee that only the intended recipient can access the secret infor-

mation. Conversely, the authentication objective assesses the

legitimacy of the two entities involved in the data exchange.

Correspondence and injective correspondence assertions en-

sure the authenticity of the communication between entities.

Correspondence assertions establish event relationships within

protocols, maintaining proper event sequencing without man-

dating a one-to-one relationship. Injective correspondence, on

the other hand, enforces a strict one-to-one link between

events.

In conclusion, by employing the ProVerif tool to assess the

security of the system protocol, we can confirm that the system

meets the desired secrecy and authentication objectives. This

comprehensive evaluation ensures the security and robustness

of the system, ultimately protecting it from potential threats.

To illustrate the validation process, we have attached screen-

shots of the core backup and recovery protocols in Figure

12 and Figure 13, indicating the successful validation of our

protocols. The ProVerif scripts for all protocol validation can

be accessed from the URL added in the footnote and verified

independently. 1

C. Advantages and Limitations

Our proposed system offers a number of advantages, as

discussed below:

• This is the first system to integrate secure backup and

restore features within open source SSI wallet by lever-

aging the Solid Pod technology.

1https://drive.google.com/file/d/1-rkPDBOhWokEtXERt3xepU4vxQ7R3Prm/
view?usp=sharing

1108

Wallet (W)User (U) Pod Provider
(PP)

(Recovery)

Pod Server
(PS)

[podReq(restore,PURLU)]httpsRestore

Submit keyPass
keyPass

[Login Form]https

[loginData]https

"Wallet successfully
restored!"

[wallerData.zip]https

[Retrieve walletData.zip
from PURLU]https

Continue

Shows File Explorer
of the device

Selects walletData.zip
using File explorer

[wallerData.zip]https

Fig. 9: Recovery Protocol Flow.

Fig. 10: Wallet Upload. Fig. 11: Download Option.

• Due to the use of Solid Pod technology, the system

ensures that an SSI wallet is securely stored considering

a number of security requirements.

• The proposed solution also offers better privacy. The

access control techniques of Solid Pod technology limit

access to resources depending on the roles and permis-

sions of the user, limiting the risk of privacy breaches

in the wallet. To further minimise this risk, the wallet is

stored in an encrypted format.

• Solid Pods offer a number of use cases and may be used

to store a broad variety of data types. Users can host their

Pod on different storage servers, thus providing enough

flexibility.

• The technology behind Solid Pod is built on open proto-

cols and standards, making it simpler to adopt and modify

as required.

However, there are also some limitations to consider, in-

cluding:

• The usage of a Pod server might create a single point

of failure, e.g. amid a DoS attack towards the Pod

Server. Therefore, it is important to investigate how to

decentralise the approach so that the solution can function

even if a single Pod server is not functional.

• Since SSI and Solid Pod are novel technologies, it is

crucial to investigate the usability of the proposed system.

D. Comparative Analysis between Solid Pod and Cloud

There are several advantages to using a Solid Pod server

in comparison to a cloud-based server for backing up and

restoring SSI wallets. We highlight a few of them below.

• Data Ownership and Control: Solid Pods provide allow

users to exert better control for storing their data, as users

can decide where to host their Pods and enforce their own

rules for storing such data. On the contrary, when users

store data on a cloud server, they are subject to their

terms of service and privacy policies. Users have limited

control over who can access the data and have little or

no knowledge of how their data are used.

• Privacy and Security: Solid Pod users can define their

own access control rules and decide who can access

their data. Open standards and protocols are used for

data access, reducing the risk of any vulnerability. Cloud

providers generally have access to user data and may

be subject to government requests for data access. In

addition, cloud servers can be more vulnerable to hacking

and data breaches.

• Interoperability and Flexibility: Pods can interoperate

with different applications and services that adhere to

open standards. This allows users to easily move data be-

tween different authorised users/domains. Cloud servers

often use proprietary formats and protocols, making it

difficult to move data to other platforms/domains.

• Decentralisation: Solid Pods contribute to a decen-

tralised web where data is not controlled by large cor-

porations. This can lead to greater resilience and less

1109

Fig. 12: Backup Protocol Validation Result.

Fig. 13: Recovery Protocol Validation Result.

TABLE III: Comparison among SSI Wallets

Trinsic [24] ADEYA [25] DIT [26] Data [27] Base Bifold [29] Updated Bifold

Backup � � � � � �
Recovery � � � � � �

Storage Option Cloud & Local Local Local Cloud � POD Server
Sec. Option Seed Phrase Seed Phrase ? ? ? Password
Encryption � � ? ? ? �

User Controllability � � � � � �

censorship. On the other hand, cloud services reinforce

the centralised model, where a few large companies

control large amounts of data.

E. Comparative Analysis between Updated Bifold and other
wallets

In this section, we present a comparative analysis between

existing SSI wallets that have backup and restoration methods

with our work (the updated Bifold) with respect to some of

the features relevant to this research. The result of our analysis

is presented in Table III. We also include the previous Bitfold

(denoted as the Base Bifold) to underline the difference with

our updated version. We have used the “�” symbol to denote

a particular feature is present in the respective wallet, whereas

the symbol “�” is used to imply that the feature is missing.

The symbol “?” is used to indicate that the respective feature

is not explicitly specified.

For analysis, we have used six features: backup, recovery,

storage option, security (denoted as sec. in Table III) option,

encryption and user-controllability. The first two features are to

imply if the wallet has backup and restore options respectively.

Even though all wallets (except the base BIfold) have backup

options, surprisingly DIT and Data wallets did not have the

restore options. Most of the wallets used either local (mobile)

storage or cloud storage. Only we have used Solid Pod for

wallet recovery and backup.

The security option indicates which security feature is

required during the backup and restore process. Trinsic and

ADEYA used seed phrases, also known as a recovery phrase,

which are a series of typically 12, 18, or 24 randomly

generated words. These words are selected from a predefined

list of words and are ordered in a specific sequence. In our

updated Bifold wallet, we used a user defined password that

contains the combination of digit, character, special character

which is used for encrypting and decrypting the wallet, acts

like a barrier to prevent unauthorised access to the information.

It is unclear as well as not specified what other wallets used.

The encryption option implies that the wallet is backed up

in encrypted formats. Like before, only Trinsic, ADEYA and

our solution back up the wallet in encrypted formats. It is not

specified for other wallets.

The user controllability feature emphasises whether the user

has any control during the backup and restore process. All

other wallets do not provide any flexibility regarding where

the backup is kept. In our solution, the user has full control

to choose any Solid Pod server, providing much better control

than any other wallets.

1110

F. Future Work

There are several potential future works within the scope of

the current work.

• Introducing an automatic syncing mechanism of SSI

construct would facilitate interesting use-cases where the

user would be able to access their SSI constructs from

multiple devices. This is currently not possible with any

SSI wallet. Automating the synchronisation of SSI wallets

would improve the usefulness of the system.

• Investigating how blockchain could be utilised to host

Solid Pods would also open up novel research avenues.

We would also like to explore this in the future.

VIII. CONCLUSION

In this research, we have proposed the use of Solid Pod

technology for the secure backup and recovery of SSI wallets.

The proposed system is based on a threat model and a number

of requirements. We have developed a PoC and used it to

illustrate several use cases that outline the applicability of the

system. Our developed PoC provides a secure and efficient

way to store and restore SSI wallets, and it can be integrated

with existing SSI frameworks to enhance the security and

usefulness of SSI applications. We believe that our work

provides a valuable contribution to the field of SSI and paves

the way for further research in this area.

REFERENCES

[1] M. S. Ferdous, “User-controlled identity management systems using
mobile devices,” 2015.

[2] M. S. Ferdous, F. Chowdhury, and M. O. Alassafi, “In search of
self-sovereign identity leveraging blockchain technology,” IEEE Access,
vol. 7, pp. 103 059–103 079, 2019.

[3] “Decentralized Identifiers (DIDs) v1.0,” accessed: 2023-03-15. [Online].
Available: https://www.w3.org/TR/did-core/

[4] “Verifiable Credentials Data Model 1.0,” accessed: 2023-03-15.
[Online]. Available: https://www.w3.org/TR/vc-data-model/

[5] J. Werbrouck, P. Pauwels, J. Beetz, and L. van Berlo, “Towards a
decentralised common data environment using linked building data and
the solid ecosystem,” in 36th CIB W78 2019 Conference, 2019, pp.
113–123.

[6] “Web inventor tim berners-lee’s next project: a platform that
gives users control of their data,” accessed: August 5, 2023.
[Online]. Available: https://www.csail.mit.edu/news/web-inventor-tim-
berners-lees-next-project-platform-gives-users-control-their-data

[7] N. Djosic, B. Nokovic, and S. Sharieh, “Machine learning in action:
securing iam api by risk authentication decision engine,” in 2020 IEEE
Conference on Communications and Network Security (CNS). IEEE,
2020, pp. 1–4.

[8] A. Preukschat and D. Reed, Self-sovereign identity. Manning Publica-
tions, 2021.

[9] J. Hughes and E. Maler, “Security assertion markup language (saml)
v2. 0 technical overview,” OASIS SSTC Working Draft sstc-saml-tech-
overview-2.0-draft-08, vol. 13, 2005.

[10] D. Recordon and D. Reed, “Openid 2.0: a platform for user-centric
identity management,” in Proceedings of the second ACM workshop on
Digital identity management, 2006, pp. 11–16.

[11] D. Hardt et al., “The oauth 2.0 authorization framework,” 2012.
[12] M. J. M. Chowdhury, M. S. Ferdous, K. Biswas, N. Chowdhury,

A. Kayes, M. Alazab, and P. Watters, “A comparative analysis of
distributed ledger technology platforms,” IEEE Access, vol. 7, no. 1,
pp. 167 930–167 943, 2019.

[13] E. Mansour, A. V. Sambra, S. Hawke, M. Zereba, S. Capadisli,
A. Ghanem, A. Aboulnaga, and T. Berners-Lee, “A demonstration of
the solid platform for social web applications,” in Proceedings of the

25th international conference companion on world wide web, 2016, pp.
223–226.

[14] A. V. Sambra, E. Mansour, S. Hawke, M. Zereba, N. Greco, A. Ghanem,
D. Zagidulin, A. Aboulnaga, and T. Berners-Lee, “Solid: a platform for
decentralized social applications based on linked data,” MIT CSAIL &
Qatar Computing Research Institute, Tech. Rep., 2016.

[15] “Rdf (resource description framework),” accessed: August 5, 2023.
[Online]. Available: https://www.w3.org/RDF/

[16] “W3c: (webaccesscontrol),” accessed: August 5, 2023. [Online].
Available: https://www.w3.org/wiki/WebAccessControl

[17] M. Van de Wynckel and B. Signer, “A solid-based architecture for
decentralised interoperable location data,” in 12th International Con-
ference on Indoor Positioning and Indoor Navigation, CEUR Workshop
Proceedings, 2022.

[18] M. Shuaib, N. H. Hassan, S. Usman, S. Alam, S. Bhatia, P. Agarwal, and
S. M. Idrees, “Land registry framework based on self-sovereign identity
(ssi) for environmental sustainability,” Sustainability, vol. 14, no. 9, p.
5400, 2022.

[19] C. H.-J. Braun and T. Käfer, “Attribute-based access control on solid
pods using privacy-friendly credentials,” in Proceedings of Poster and
Demo Track and Workshop Track of the 18th International Conference
on Semantic Systems co-located with 18th International Conference on
Semantic Systems (SEMANTiCS 2022) Ed.: U. Şimşek, 2022, p. 5.

[20] “ T. Looker, O. Steele, BBS+ Signatures 2020, Draft CG Report, W3C
Credentials CG, 2022,” accessed: August 5, 2023. [Online]. Available:
https://w3c-ccg.github.io/ldp-bbs2020/#the-bbs-signature-suite-2020

[21] M. Ramachandran, N. Chowdhury, A. Third, J. Domingue, K. Quick, and
M. Bachler, “Towards complete decentralised verification of data with
confidentiality: different ways to connect solid pods and blockchain,” in
Companion Proceedings of the Web Conference 2020, 2020, pp. 645–
649.

[22] R. Soltani, U. T. Nguyen, and A. An, “Practical key recovery model
for self-sovereign identity based digital wallets,” in 2019 IEEE Intl
Conf on Dependable, Autonomic and Secure Computing, Intl Conf on
Pervasive Intelligence and Computing, Intl Conf on Cloud and Big
Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech). IEEE, 2019, pp. 320–325.

[23] H. Rezaeighaleh and C. C. Zou, “New secure approach to backup cryp-
tocurrency wallets,” in 2019 IEEE Global Communications Conference
(GLOBECOM). IEEE, 2019, pp. 1–6.

[24] “Trinsic,” accessed: August 5, 2023. [Online]. Available: https://trinsic.id
[25] “Adeya wallet,” accessed: August 5, 2023. [Online]. Available:

https://blockster.global/
[26] “Dit wallet,” accessed: August 5, 2023. [Online]. Available: https:

//play.google.com/store/apps/details?id=com.dit&hl=en IN&gl=US
[27] “Data wallet,” accessed: August 5, 2023. [Online]. Available:

https://igrant.io/datawallet.html
[28] A. Shostack, Threat modeling: Designing for security. John Wiley &

Sons, 2014.
[29] “Aries mobile agent react native,” accessed: August 5, 2023.

[Online]. Available: https://github.com/hyperledger/aries-mobile-agent-
react-native

[30] “React native,” accessed: August 5, 2023. [Online]. Available:
https://reactnative.dev/

[31] “Hyperledger aries,” accessed: August 5, 2023. [Online]. Available:
https://wiki.hyperledger.org/display/ARIES

[32] “Hyperledger indy,” accessed: August 5, 2023. [Online]. Available:
https://wiki.hyperledger.org/display/INDY

[33] “Indicio public mediator,” accessed: August 5, 2023. [Online].
Available: https://indicio-tech.github.io/mediator/

[34] “Solid pod,” accessed: August 5, 2023. [Online]. Available: https:
//solidproject.org/

[35] “Reactjs,” accessed: August 5, 2023. [Online]. Available: https:
//react.dev

[36] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre, “Proverif 2.00:
automatic cryptographic protocol verifier, user manual and tutorial,”
Version from, pp. 05–16, 2018.

1111

